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Abstract

We applied the methods of lobe dynamics to the problem of transport across

the edge of a barotropic vortex�patch� The model used captures the essential dy�

namics of �lament�shedding in the wintertime stratospheric polar vortex� Two

approaches were adopted for the problem� ��� the dominant periodic compo�

nent of the vortical �ow was identi�ed and conventional lobe dynamics methods

for periodic dynamical systems were applied to it� �	� the full aperiodic
 dy�

namically consistent �ow was retained and a modi�ed brand of lobe dynamics

was used to quantify the transport� Our results show that in the periodic

case
 much reversible transport occurs across the lobe dynamical boundary due
to overlapping intruding and extruding lobes� In the aperiodic case
 a small

amount of intrusion was noted
 contrary to the well�established fact that po�

tential vorticity shedding in barotropic vortices is uniquely outwards� In our

discussion
 we argue that while lobe dynamics provides a rigorous framework for

quantifying transport across the lobe dynamical boundary
 this boundary may

not be appropriate for quantifying transport across internal transport barriers


such as the stratospheric polar vortex edge�
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� Introduction

The particular atmospheric problem of interest in this paper is the issue of tracer
transport across the edge of the polar vortex in the lower winter stratosphere� This
is an important problem in its own right 	 amongst other things
 transport across
the vortex edge is thought to have a signi�cant in�uence on the ozone chemistry
both within and outside the vortex���� It also serves as a paradigm for a wide range
of geophysical �uid dynamical problems
 e�g� leakiness of the stratospheric 
tropi�
cal pipe����
 stratosphere�troposphere exchange by tropopause�folding���
 lower tropo�
spheric water vapour transport���
 and cross�stream mixing in the ocean�����������������
In many Lagrangian�chaotic �ows
 a well�mixed zone �anked by internal transport

barriers� is formed through the stretching and folding associated with the transport
itself���� The transport barriers are identi�ed by sharp tracer and potential vorticity
gradients� In the winter stratosphere
 the polar vortex edge is such a barrier
 and
cross�edge transport is e�ected by Rossby�wave breaking����� Filaments of polar vor�
tex material are ejected into middle latitudes
 where they eventually dissipate�����
Entrainment of mid�latitude air into the vortex has also been observed����
 but it is
much less frequent�
Methods have been devised to quantify such transport
 using data from atmo�

spheric observations������������������ or from models��������������� A wide range of val�
ues has been obtained from these studies
 because di�erent de�nitions were adopted
for the boundaries across which the transport was measured� Indeed
 Sobel et al�
���������� argued that making the appropriate choice of boundary across which to
measure transport is the crux of the transport calculation	 the computed mass �uxes
may be very sensitive to that choice�
Set in the above context
 we wish to investigate whether lobe dynamics provides

a useful framework for measuring transport across the vortex edge
 using the vortex�
patch model of Polvani and Plumb ����������� Lobe dynamics has been employed

to quantify transport in certain modeled������� and observed�������� oceanic �ows� Its
distinguishing feature in such applications is the de�nition of a boundary
 based
solely on �ow kinematics
 across which transport is measured� In all these cited work

lobe dynamics yields rigorous and precise quanti�cation of transport
 hence providing
much motivation for applying it to the stratospheric polar vortex problem� Recently

Bowman ���������� even revealed the presence of stable and unstable manifolds in

the stratosphere
 following the practical approach of Miller et al� ����������
With regards to theory
 lobe dynamics pertaining to periodic dynamical systems

has a long tradition in the literature� We merely cite two recent work here	 Ottino
��������� introduces the subject with an emphasis on applications to �uid mixing and

transport� and Wiggins ���������� takes on the subject with a rigorous mathematical
approach� References to older literature can be found in both these recent work�
The lobe dynamics for aperiodic dynamical systems have also been investigated

before in the literature
 but is less �rmly established than for periodic systems� Again
citing only recent examples
 Malhotra and Wiggins ���������� extended the in�nite�
time formulation of lobe dynamics to aperiodic �ows and applied the theory to a range
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of kinematic �ows with small parameters� Subsequently
 the theory was successfully
applied to computational��� and observed oceanic �ows���� � On the other hand
 Miller
et al� ��������� examined lobe dynamical transport over a �nite time interval across
an aperiodic meandering barotropic jet on a ��plane� Their work was followed by
Haller and Poje ����������
 where �nite�time lobe dynamics theory was formulated
and used to study cross�stream mixing e�ected by Gulf Stream Rings� The approach
of Malhotra and Wiggins ������ and those of Miller et al� ������ and Haller and Poje
������ are related but di�erent as the latter two emphasized �nite�time behaviour of
aperiodic systems�
In this paper
 lobe dynamics is applied to the model stratospheric polar vortex

via two approaches� In the �rst approach
 we relied on the fact that the modeled
�ow is close to periodic after an initial adjustment period� This allows us to apply
lobe dynamics to the dominant periodic component of the �ow
 making use of well�
established theory� The objective here is to evaluate how well the existing technique
performs in a kinematic �ow bearing the cat�s eye feature frequently encountered in
wintertime stratospheric �ow�
In the second approach
 we retained the full aperiodic dynamically consistent �ow�

But we employed an ad�hoc modi�cation of the aperiodic lobe dynamics theory
 as we
found that none of the existing theory that we are aware of��������� suits our purpose�
The goal is to assess whether transport across the lobe dynamical boundary is an
appropriate characterization of the transport across the vortex edge�
We delay our discussion until after the results of both approaches are presented


and we shall note the shortcomings and merits of the lobe dynamical view of transport
across the stratospheric polar vortex edge�

� Model Description

The object of investigation is a barotropic vortex�patch model derived from the quasi�
geostrophic shallow�water model of Polvani and Plumb ����������� This model is able
to capture the essence of the dynamics associated with the stratospheric polar vortex

yet its simplicity renders its transport characteristics self�evident� In the model
 the
transport barrier is simply the jump in potential vorticity at the vortex edge
 and
so transport across it can be quanti�ed by performing surgery on the contour de�
marcating the discontinuity
 in the manner described in Dritschel ����������� Having
such a natural 
boundary� makes the model ideal as a test bed for other transport�
measuring schemes� In the literature
 barotropic models have also been used before
to study the dynamics of the stratospheric polar vortex �see e�g� Juckes and McIntyre

����������
A brief model description follows next� For further details
 the reader is referred

to Polvani and Plumb ����������� The model is based on inviscid quasi�geostrophic
shallow�water dynamics on an f�plane
 and uses the Contour Dynamics with Surgery
�CDS� algorithm of Dritschel ����������� The mean depth is D and the system is
forced by time�dependent bottom topography h� The system is governed by the
conservation of potential vorticity �PV�
 as follows 	
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where Q is the potential vorticity
 f� is the constant planetary vorticity
 � is the
streamfunction of the geostrophic �ow
 and � is the inverse Rossby deformation radius
�i�e� f��

p
gD��

Since lobe dynamics is formulated for non�divergent �ows
 we let � � �
 so that
the �ow is in the barotropic limit� The model is initialized at Day � �where a day is
de�ned as ���f�� as a circular PV vortex�patch embedded in a uniform background
of lower PV� That is


Q �
� Qi if r � r�
Qo otherwise

Since the wind speed increases without limit as radial distance increases
 we shall
restrict our attention to the domain within �r� from the origin� The air in this region
is isolated from the rest of the f�plane from Day � to Day ��
 as we con�rmed with
the advection of a material contour initially at radius �r��
The topographic forcing
 in polar coordinates �r� �� about the origin
 takes the

form 	

h�r� �� t� � DH���� e�t�� �J��	r� cos �

where J��	r� is the �st order Bessel function of the �rst kind andH� is a dimensionless
parameter that governs the strength of the forcing� The forcing is aperiodic and its
time�dependence dies away for t� 
 as the topography approaches a constant height�
Figure � shows the spatial form of the forcing�
The following set of parameters is used for all work in this paper	 Qi � ���f�


Qo � ���f�
 	 � ����r�
 
 � ���days
 H� � ����� The above choice of values follows

Polvani and Plumb ����������� If we take r� as ����km and equate a model day to
a real day
 these parameter values yield wind velocities that are roughly consistent
with observations in the Northern hemisphere mid�latitude lower stratosphere� Our
comparison with the stratosphere should be taken with caution however
 as the model
is idealized� But for convenience
 we shall sometimes refer to the origin as the 
pole�
and the region outside �r� as the 
tropics��
We have chosen a slightly supercritical value for H� so as to get the PV vortex

breaking but not too violently
 since we do not wish to complicate the lobe dynamics
in our preliminary application� Please refer to Polvani and Plumb���������� for details
on the di�erent dynamical regimes for this model �ow� Incidentally
 the weak Rossby�
wave breaking in the polar vortex is well�surveyed in the literature �see e�g� Waugh et

al� ����������
 Plumb et al������������ so that we have a reasonable basis to compare
our results to�
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The following CDS parameter values are employed 	 � � ���
 
 � r�����
 
t �
����day
 where � is a measure of the node density on contours
 
 is the smallest
separation between contour segments before they merge
 and 
t is the time step used
in the computation����� An increase in � or a decrease in 
 or 
t does not signi�cantly
alter the subsequent observed evolution of PV�
From a single prognostic run
 all contour node positions are saved at every time

step� The saved PV contours represent compressed high resolution wind data
 through
the invertibility principle �equation ����� Advection of particles and material contours
in subsequent diagnostic runs uses winds at the particle and contour node positions

inverted from the PV contours at every time step� Consistency between forward and
backward advection of the same particle or contour is ensured through the following
features	

� a common set of PV contours �wind data� for both forward and backward runs�
� a �th order 
Runge�Kutta�like� node advection scheme that respects time sym�
metry �c�f� Appendix C��

� higher node density �� � ����� than in the prognostic run�
� switching o� surgery on the passive contours �
 � ���

Such consistency is important since the diagnostic runs essentially involve forward�
backward�forward and backward�forward�backward advection sequences� The evolu�
tion of the PV and streamfunction are depicted in Figure ��
As mentioned
 the transport barrier in this model is simply the PV jump across the

vortex edge
 the vortex being de�ned as the largest contiguous patch of high vorticity
after �laments have been cut o� from it by contour surgery� From the discontinuous
reduction of the vortex area
 we measured that the �lament�shedding events after
Day ���� and Day ���� constitute outward transport of high�PV material by amounts
of �����r�� and �����r

�
� respectively�

� First Approach� Periodic Flow

Inspection of the streamlines in Figure � shows that from Day ��� onwards
 a dominant
period of ��� days has evolved
 as the forcing becomes increasingly steady� So
 we
extracted the dominant component of the �ow that repeats every ��� days� In do
this
 one may formally perform a discrete Fourier transform of the �ow from Day ���
to Day ���� and pick out every second spike in the frequency spectrum
 starting from
the gravest end� The resulting �ow is then identical to an equal�weighting composite
constructed from the aperiodic �ow during the two intervals �Day ���
 Day ��� and
�Day ��
 Day ������ Figure � shows the composite �ow
 where the cycle starts with
Day ���
 for ease of comparison with Figure �� Because equation ��� is nonlinear

potential vorticity is not conserved in this composite �ow cycle� It is interesting to
note that this approach to obtaining periodic �ows out of aperiodic �ows di�ers from
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the approach adopted in Miller et al� ���������� In that paper
 the authors truncated
the aperiodic �ow �eld after one single dominant periodic cycle and repeated the
entire �ow �eld for that time interval inde�nitely into the future�
To see the lobe dynamics of the composite �ow
 we followed Miller et al� ���������

by using the hyperbolic stagnation point of the time�averaged �ow as an estimate
of the location of the hyperbolic trajectory� In this
 we assumed the �ow could be
decomposed into a large steady component and a small periodic perturbation� Next

a small circular passive tracer contour was constructed around that location on Day
���� It was separately advected forwards and backwards in time for one period so that
it would collapse onto the unstable and stable manifolds respectively
 thus locating
them� Then
 the stable manifold was phase�shifted forwards in time by two periods to
intersect the unstable manifold and identify the hyperbolic trajectory on Day �� and
hence also on Day ��� and Day ���� as the �ow is periodic� Finally
 sections of the
collapsed contours around the manifolds spanning across the hyperbolic trajectory
were again advected forwards from Day ��� and backwards from Day ����
 to locate
respectively the unstable and stable manifolds and hyperbolic trajectory with higher
precision�
The practice of allowing passive tracers to collapse onto manifolds
 thereby re�

vealing the location of stable and unstable manifolds and the hyperbolic trajectory
is rather common in the literature��������� What is di�erent here is the numerical
technique we use	 Dritschel�s algorithm for contour advection is applied to the pas�
sive tracer contours� The method is essentially the same as Contour Advection with
Surgery �CAS� discussed in Waugh and Plumb ����������
 except that surgery was not
performed on the contours in order to maintain an unbroken trace of the manifolds�
In brief
 the tracer contours are represented by nodes that are passively advected by
the wind �eld
 and they are renoded constantly to ensure good resolution of �ne�scale
features�
The lobes identi�ed in this manner are shown in Figure �� The intersection points

between the stable and unstable manifolds
 that are connected to the hyperbolic
trajectory by unintersected segments of the manifolds
 are known as the primary
intersection points �PIP�� They are labeled as Bn�s in the �gure� Note that the
position of B� on Day �� is identical to that of B� on Day ���
 as the cycle repeats
every ��� days� Given a reference PIP
 say Bn
 the lobe dynamical boundary is
de�ned as the union of the segment of the unstable manifold between Bn and the
hyperbolic trajectory
 and the segment of the stable manifold between Bn and the
hyperbolic trajectory� It is indicated by the thick line in the �gure� The reference PIP
that determines the lobe dynamical boundary
 Bn
 is rede�ned to the PIP upstream

B�n � ��
 when the stable manifold between Bn and B�n � �� has shortened to less
than �
The above de�nition for the lobe dynamical boundary has the advantage of being

stationary in Poincare sections� In fact
 it is the transport boundary conventionally
adopted in Poincare sections �c�f� Section ����� of Malhotra and Wiggins ������������
Traditional Poincare�section analyses of periodic systems implicitly rede�ne the ref�
erence PIP to the second PIP upstream at the moment that each Poincare section
is taken� But when the system is considered in continuous time
 the timing of the
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rede�nition of the reference PIP acquires an added freedom within a period� The
choice of � a�ects only this timing and not the amount of transport
 as the latter is
dependent only on lobe areas� Since it is not an objective of this paper to address
the timing of intrusion and extrusion events
 a reasonably small value of � � ���r� is
conveniently assumed�
Table I shows the transport across the lobe dynamical boundary� It is a well�

known theorem �see e�g� Ottino ���������� that in a periodic �ow
 there exists an
in�nite number of lobes in any tangle between the unstable and stable manifolds
 and
they all have equal areas� Our numerical computation show that the intruding and
extruding lobes
 Li and Le
 have roughly equal but not identical area� The error values
for Li and Le in Table I refer to the uncertainty due to the incomplete collapse of the
computed passive contours onto the manifolds� Uncertainties from other sources
 e�g�
the discrete representation of contours and the �nite resolution in the saved PV �eld

are not estimated� Thus
 the discrepancy in area between Li and Le is attributed
to the accumulation of these unaccounted errors during contour advection
 which is
substantial because of the exponential stretching in the Lagrangian�chaotic �ow�
Therefore
 we estimate that the true lobe dynamical transport to be �����������r��

in each direction� About half of the cancelation between inward and outward trans�
port comes from the reversible migration of the �uid parcel de�ned by the overlap O
between Li and Le �see Figure ��� Contrast this with the exclusive outward transport
of �����r�� measured across the vortex edge by the contour surgery algorithm�

� Second Approach� Aperiodic Flow

In this section
 we apply lobe dynamics to the full aperiodic vortex �ow shown in
Figure �� This is arguably the more relevant approach
 since we do not expect the
wintertime stratospheric �ow to be often dominated by a large periodic component�
Additionally
 the lobe dynamical transport in the periodic component �ow revealed
in the previous section is quite di�erent from what we might expect from performing
contour surgery on the simple model vortex� We are interested in the transport from
Day � to Day ����� From Day ���� to Day ��
 the roll�up of a �lament signi�es the
possible existence of a secondary hyperbolic point in the �ow
 and hence for the sake
of simplicity
 that time interval is excluded� The initial adjustment period
 Day � to
Day ���
 is included to introduce a large aperiodic component to the case study
 as
we do not expect the aperiodicity in real stratospheric �ows to have small amplitude�
Regarding the lobe dynamics of aperiodic systems
 as pointed out in the Introduc�

tion
 we are currently aware of two di�erent approaches in the literature� In Malhotra
and Wiggins ����������
 the hyperbolic trajectory is the particle trajectory to which
particle trajectories on the stable and unstable manifolds converge as time approaches
positive and negative in�nity respectively
 just as in periodic lobe dynamics theory�
In that paper
 the theory was applied to steady or periodic �ows which are disturbed
by an aperiodic component with an ��amplitude parameter
 where hyperbolic trajec�
tories were proven to exist� And in more recent work
 the theory has been applied to
a ��layer double�gyre quasi�geostrophic ocean model���
 as well as real oceanic �ows
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in Monterey Bay
 California����� However
 the theoretical conditions for the existence
of hyperbolic trajectories in an aperiodic �ow of a general nature
 such as our model
�ow from Day � to Day ����
 has not been established�
Haller and Poje ���������� formulated a theory of �nite�time lobe dynamics� For

a given �nite time interval where a hyperbolic stagnation point exists in the stream�
function
 the authors show rigorously that a hyperbolic trajectory
 and its associated
stable and unstable manifolds
 exist if the �ow satis�es certain speci�ed constraints�
The manifolds and the hyperbolic trajectory identi�ed in this manner are not unique

but their identity converges exponentially with the length of the �nite time interval�
However
 in our model
 the hyperbolic stagnation point in the streamfunction is non�
existent around Day ����� To use the method
 it appears that one has to divide the
associated lobe dynamics from Day � to Day ���� into two separate episodes
 each
with its own hyperbolic trajectory� But note that the separation of the �lament from
the vortex after Day ���� in Figure � is not due to the stagnation point vanishing

but is brought about by the contour surgery algorithm� When a smaller CDS param�
eter 
 is speci�ed
 the �lament continues to stretch exponentially
 even though the
stagnation point vanishes around Day ����� This seems to indicate that the break�
ing event ought to be associated with a single hyperbolic trajectory through Day
����� Additionally
 from a conceptual standpoint
 lobe dynamical structures
 being
inherently Lagrangian in nature
 should have an uninterrupted identity
 even when
Eulerian structures are transitory during the period of interest� Moreover
 hyperbolic
stagnation points may vanish in one frame
 while persisting in another� The reason
is that the topology of Eulerian �ow depends on the frame of reference� No single
frame can be appropriate for all circumstances
 and it is unsure if there always exists
an appropriate frame �e�g� when a given �ow has a spectrum of dispersive waves��
Therefore
 our model is not accessible to this approach
 at least without a clearer idea
of what the appropriate frame of reference is�
Although the above two approaches to aperiodic lobe dynamics are di�erent in

theoretical details
 they employ the same principles in practice � the hyperbolic tra�
jectory is a particle trajectory about which there is strong exponential deformation
of the �uid substance
 and that this deformation lasts long enough for the stable
and unstable manifolds to be located by the exponential approach of tracers lines�
So
 while both theoretical approach are not suitable to our case study for their own
reasons
 the common gist of their implementation methods is still applicable�
For lack of a more appropriate approach
 we therefore made the following ad�hoc

modi�cation to the theories of aperiodic lobe dynamics	 for the hyperbolic trajectory

we select the particle about which there is the greatest exponential deformation of the
�uid substance from Day � to Day ����� The details of how we locate this trajectory
and how we measure the exponential deformation are relegated to Appendix A and
B� Here
 it su�ces to note that the method is meant for �nite�time applications

and is based on Lagrangian kinematics� The unstable manifold is located by the
�incomplete� exponential collapse of a circular tracer contour of radius � around the
hyperbolic trajectory in forward time starting from Day �
 using Dritschel�s contour
advection algorithm without surgery����� It may be thought of as the material line
that straddles the hyperbolic trajectory and has the greatest increase in length from

�



Day � to Day ����� But such an interpretation is not essential to the practical
implementation of the method� The stable manifold can be similarly located and
interpreted
 except in reverse time starting from Day ����� In our case
 we used
� � ���r��
Figure � shows the lobe dynamics in the aperiodic vortex �ow on Day ��� and

subsequent times when a lobe extrusion or an intrusion occurs� The de�nition of the
lobe dynamical boundary in the aperiodic case is the same as in the periodic case

following Malhotra and Wiggins ����������� The lobe dynamical boundary �thick
full line� separates an interior region �henceforth 
LD�interior�� from an exterior re�
gion �henceforth 
LD�exterior��� The alternating intrusion and extrusion of lobes

aptly called 
turnstile transport�
 is clearly seen in Figure �� Note that the exchange
mediated by lobes occurs directly between the vortex�edge region �the 
subpolar�
region� and the region of anticyclonic �ow �the 
subtropical� region�� This transport
is nonlocal
 and so if the tracer �eld has a meridional gradient
 the lobes will bring
air parcels of disparate tracer mixing ratios together
 enhancing the e�cacy of sub�
sequent mixing� Contrast this mechanism with di�usion which
 by its local nature

mixes air parcels of only slightly di�erent tracer mixing ratios in a continuous tracer
distribution�
From Table II
 the total outward transport measured by lobe dynamics from

Day � to Day ���� is ����� � �����r�� while the total inward transport measured is
������ � ������r��
 with the convenient choice of � � � � ���r�� This is much
larger than the PV transport �����r�� measured by the contour surgery method� We
can understand this as follows	 the area of the LD�interior prior to any transport is
������ �����r��
 larger than the area �r�� of the vortex on Day �� This indicates that
the LD�interior includes non�vortex air along its periphery� Consequently
 much of
the extruded air
 which originates in the periphery of the LD�interior
 has low PV
and so does not contribute to PV transport�
Cancelation between inward and outward transport is only a small fraction �����

����� of the outward transport
 because the intruding lobes are much smaller than the
extruding lobes� Yet
 the weak intrusions witnessed here are signi�cant because their
Lagrangian identities are distinct from the extrusions �i�e� the lobes do not overlap��
They represent irreversible entrainment of LD�exterior air into the LD�interior from
Day � to Day ����� Yet no low�PV entrainment into the vortex occurs
 according to
the contour surgery method�

� Discussion

��� Lobe Dynamics in the Periodic Case

Because the theorem of equal lobe areas for periodic �ows does not apply to the
aperiodic �ow
 we may expect a priori that the lobe dynamical transport in any
periodic �ow component to be di�erent from that in the full aperiodic �ow� However

from theory alone
 it is unclear how big these di�erences are� Contrasting Day ��� on
Figure � and Day ���� on Figure �
 and Tables I and II
 we see that the di�erences
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are large
 despite the two streamfunctions looking rather similar in Figures � and ��
In retrospect
 the results a�rm the well�known sensitivity of Lagrangian transport
to Eulerian �ow structures� More importantly
 our results caution against taking the
transport by the periodic �ow component as the measure of transport in an aperiodic
�ow�
We also identi�ed an interesting transport phenomenon in the periodic case� The

instance of overlapping intruding and extruding lobes leading to reversible transport is
dubbed as 
pathological� in Malhotra and Wiggins ����������� Thus
 a rationalization
for its occurence appears in order� Now
 in the periodic system
 there must be as
much �uid intruded as it is extruded� But the intruded �uid cannot really remain in
the 
interior�
 because the transport is strongly asymmetric across the vortex edge in
the aperiodic case
 and the periodic �ow is only slightly di�erent from the aperiodic
�ow from Day ��� onwards� The most direct way to reconcile the two requirements
is to have much of the intruded �uid extrude again before mixing can occur� To do
this
 the lobe dynamical boundary moves outwards from the vortex edge
 thereby
counting the bi�directional meridional stirring outside the vortex�patch as symmetric
cross�boundary transport�

��� Lobe Dynamics in the Aperiodic Case

Figure � shows the close proximity between the lobe dynamical boundary and the
vortex edge in the aperiodic �ow� But note	 the intruding lobe Li �
 composed
entirely of low�PV air
 is intruded into the LD�interior
 but it is also evidently outside
the vortex� The reason is that much of the PV �lament previously wrapped around
the vortex has been removed by contour surgery
 leaving fragments �vis�a�vis the
circles in Figure �� that do not envelop Li �� Hence
 what is counted as an intrusion
by lobe dynamics
 is no more than peripheral stirring outside the vortex� Closer
inspection of Figure � further reveals that Li � is composed entirely of high�PV air
and is in the LD�exterior� Yet
 Li � is clearly part of the vortex at this time and
was never separated from it� The subsequent intrusion of Li � at Day ���� �see
Figure �� is then an illusion resulting from the catergorical accounting procedure of
lobe dynamics� As a result
 the picture of transport according to lobe dynamics is
qualitatively very di�erent from that obtained by surgery of thin PV �laments� In the
former
 some intrusion has taken place
 whilst in the latter
 transport is exclusively
outwards�

��� Lobe Dynamical Transport vs� Vortex Edge Transport

The distinction between the 
turnstile� transport across the lobe dynamical boundary
and that across the vortex edge is not merely one of semantics� First
 continual stirring
within the critical layer creates in the winter stratosphere
 as in many similar �ows

a clear distinction �such as in chemical composition� between air poleward of the
vortex edge and the well�mixed air mass outside the edge� �In most cases
 there will
be a second barrier at the other side of critical layer� We eliminated that in our
calculations simply by con�ning the PV gradient to a single contour�� Second
 the
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edge itself becomes a transport barrier
 across which transport is much weaker than
elsewhere �e�g� Sobel et al� ������������ Thus
 to the extent that one can usefully
describe transport in such systems by a single measure
 it is usually the transport
across the barrier�s� that is the most critical measure�
While the outward transport across the lobe dynamical boundary is kinematically

related to that across the vortex edge
 the two will not usually be the same whenever
the lobe dynamical boundary does not coincide with the edge� In the examples shown
here
 the two do not coincide� To some extent
 this statement is trivial in the context
of our model calculations
 since the relative locations of the vortex edge and the
hyperbolic trajectory are determined almost independently by the initial conditions
and the bottom topography� In reality
 it is stirring associated with the hyperbolic
trajectory that creates the sharp vortex edge from continuous gradients �e�g� Juckes

and McIntyre �����������
 so the two are not mutually independent� However
 in
a conservative �ow
 the location of the vortex edge depends on the past history of
transport
 while the lobe dynamical boundary is a function only of the kinematics
during the period of interest� Even in a simple model such as that used here
 there are
certain parameter ranges in which a few events occur in which material is stripped o�
the vortex
 following which transport across the edge ceases����
 even though turnstile
transport continues inde�nitely within the critical layer� At least in the stratospheric
context
 the location of the vortex edge is also determined by nonconservative e�ects
�in particular
 radiative cooling acting on PV�� Thus
 we do not expect in general a
precise relationship between the lobe dynamical boundary and the vortex edge�

��� Asymmetric PV Transport across the Vortex Edge

There is much observational evidence that extrusions of high�PV air occurs more
frequently than intrusions of low�PV air in the stratospheric polar vortex����������
Modeling studies come to essentially the same conclusion
 although cases where in�
trusions dominate over extrusions could be contrived����� For barotropic vortices such
as the one in this paper
 outward breaking of high�PV air seems to be the only form
of cross�edge transport�
Although lobe dynamics may not provide a good framework for measuring cross

vortex�edge transport
 it does provide some insight into the phenomenon of asym�
metric transport� In our case study
 right from Day �
 the hyperbolic trajectory is
located outside the PV vortex� Figure ��a� is a schematic representation of the sit�
uation� Given this geometry
 the high�PV �lament extruded from the vortex must
be nearer the unstable manifold than the low�PV air in lobe Li �� Consequently
the high�PV air undergoes strong exponential stretching and cascades to small scales
before the low�PV air� It is reasonable
 therefore
 for it to be surgically removed
before the low�PV air� �In the stratosphere
 the downscale cascade of thin high PV

�lament would eventually be dissipated by molecular di�usion������ The result is then
a high�PV �lament extruding and 
mixing� into a low�PV environment
 and not the
converse�
We note in passing that if the hyperbolic trajectory is located inside a vortex

��



�Figure ��b��
 inward breaking will be the norm
 such as the case with an interior

critical line in Nakamura and Plumb ����������� In the stratosphere
 the bias for
�lament�shedding from the tropics into the surf zone can be explained in the same
manner � the hyperbolic trajectory now lies polewards of the tropical easterly jet�

� Conclusions

Previous work in the literature������������������ have shown that lobe dynamics gives
an engaging and mathematically precise framework for understanding transport in
Lagrangian�chaotic �ows� Intruding and extruding lobes have provided a systematic
measure of transport in many oceanic �ows��������������� In the winter stratosphere

the polar vortex edge is a throttle to tracer transport
 and many methods have been
devised to quantify the mass and tracer �uxes across it� However
 the utility of lobe
dynamics in this context was unknown� In this paper
 we investigated this problem
by adopting two approaches�
The periodic approach yielded material transport that is qualitatively very dif�

ferent from the PV transport measured by Dritschel�s contour advection algorithm�
Equal quantities of air ������ �����r�� are transported in both directions across the
lobe dynamical boundary over two periods from Day ��� to Day ����
 with about
half of the quantity being reversible transport due to overlapping intruding and ex�
truding lobes� The transport measured by the CDS algorithm was a total of �����r��
exclusively outwards from Day � to Day ����� The contrast highlights the fact that
transport rates computed across the lobe dynamical boundary
 which is located just
outside the vortex edge
 not only exaggerate the magnitude of transport
 but also fail
to capture its asymmetry�
In the aperiodic approach
 there is an improvement in the representation of the

asymmetry of transport � the total inward transport across the lobe�dynamical bound�
ary is only ����� ����� of the total outward transport� However
 the total outward
transport of �����������r�� from Day � to Day ���� is much larger than the transport
of �����r�� measured by the CDS algorithm� This is because the interior de�ned by
the lobe dynamical boundary initially includes much low�PV air which is extruded
later on� The intruding lobes do not actually cross the transport barrier
 vis�a�vis the
edge of the vortex�patch� The underlying reasons are	 ��� the categorical accounting
procedure of lobe dynamics� and ��� the small but signi�cant misalignment between
the lobe dynamical boundary and the transport barrier�
Nevertheless
 while not suitable as a quantitative theory of transport across the

polar vortex edge
 lobe dynamics does give some qualitative insight into the problem
of asymmetric PV transport across the vortex edge�
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Appendix

A� Location of the Hyperbolic Trajectory

We �rst located the locus of large instantaneous stretching from maps of det�M� at
Day � and Day ����
 where M is the velocity gradient tensor de�ned by equation
��� in Appendix B� The winds from which M was derived had been inverted on a
regular grid of resolution �����r� by �����r�� Negative det�M� indicates local strain
dominating over local rotation
 in which case S � �� det�M����� is the instantaneous
rate of exponential stretching of small material elements
 in certain time�dependent
eigen�directions�
Note that det�M� is not a scalar � its value is not preserved under coordinate

transformations� But the co�moving frame of the background �ow is ideal for com�
puting det�M� in our case
 because the eigen�directions of M�t� at the location of
the hyperbolic trajectory varies the least with time in this frame �see e�g� Polvani

et al� ������������ In our model
 the background �ow is associated with the bottom
topography and so det�M� is evaluated in the stationary frame�
As the mean rate of elongation of the PV contour from Day � to Day ���� was

about ����!day
 we chose Sth � ����!day as the threshold beyond which S is consid�
ered signi�cant� So
 we advected contours demarcating the det�M� � �S�

th region on
Day � forwards in time
 and other similar contours on Day ���� backwards in time�
The intersection of regions enclosed by the forward�advected and backward�advected
contours denote the �uid substance experiencing signi�cant S on both Day � and
Day ����� It was next veri�ed that this set of �uid substance experienced signi�cant
S throughout Day � to Day �����
On Day ��
 this intersection set is least extended spatially� Visual inspection at

this time shows that a subset of it
 A
 lying near the hyperbolic stagnation point in
the streamfunction
 accumulates the most stretching both in forward advection from
Day � to Day ��
 and in backward advection from Day ���� to Day ��� Since the �ow
is incompressible
 this implies that A also accumulates the most stretching from Day
� to Day ���
Next
 a coarse grid was set up over A on Day �� and a precise Lagrangian measure

of exponential deformation � vis�a�vis the deformation exponent � de�ned by equation
��� in Appendix B � was calculated for all particles lying on the grid points� High
values of � were aligned in cross�like formations
 reminiscent of the homoclinic tangles
around the hyperbolic trajectory �Figure ��� The calculation was repeated at �ner
and �ner grids over the heart of the cross with the highest �� In the end
 the particle X
with the largest � on the �nest grid was identi�ed as the one closest to the hyperbolic
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trajectory� The hyperbolic trajectory is taken here to be the particle in A that has
the largest ��
X was advected backwards to Day � and forwards to Day ���� to estimate the

initial and �nal locations of the hyperbolic trajectory� To gauge the error in the
estimates
 a circular contour centered on X
 with radius equal to half the �nest grid
resolution �� ����r��
 was advected from Day �� to Day � and from Day �� to Day
����� On Day � and Day ����
 these 
error contours� lie within the judiciously chosen
distance of � � ���r� from X
 so that tracer contours used to locate the stable and
unstable manifolds do in fact envelop the hyperbolic trajectory�
Finally
 note that the earlier calculation of detM in an appropriate Eulerian

frame only serves to pick out the approximate location of the material set A that
has the highest cumulative exponential stretching� The subsequent identi�cation of
the hyperbolic trajectory within A is not crucially dependent on this calculation �i�e�
we can have a slightly di�erent set A and still be able to de�ne the same hyperbolic
trajectory�� Hence
 the method here is fundamentally based on Lagrangian kinematics
and is independent of the Eulerian frame of reference�

B� Some Mathematical Details

The velocity gradient tensorM of �D �ows is given by Batchelor ���������� in cartesian
coordinates �x� y� as	

M�t� �
� �u

�x
�u
�y

�v
�x

�v
�y

�
���

Note that in incompressible �ows
 tr�M� � � at all times�
The instantaneous rate of deformation experienced by a small �uid element ��x is

related to M�t� by	

D

Dt
��x � �

D�x

Dt
� ��u �M�t� ���x

Observe that the symmetric component of M�t� provides local strain and isotropic
expansion
 while the antisymmetric component of M�t� provides local rotation �the
rate of which equals half the vorticity�� Thus
 real eigenvalues of M�t� represents
physically the strain overcoming the rotation
 leading to exponential deformation of
the small �uid element at that instant� The instantaneous stretching rate S�t� is
properly the positive eigenvalue of M�t�
 which is �� det�M����� in incompressible
�uids�
To measure the cumulative stretching rate on a �uid element over a �nite time

interval �ti� tf �� one may imagine using the Lyapunov exponent � computed over a

�nite�time interval���������� It can be related to the instantaneous velocity gradient
tensor M�t� by	

���� ti� tf� �
�

tf � ti

Z tf

ti

"n��� t� �M�t� � "n��� t� dt ���

��



Here
 "n��� t� is a unit vector always parallel to an in�nitesimal vector �uid element
that is anchored at one end to the particle� It rotates with the local �ow around
that particle such that its orientation at time tf is in direction �� But there is a
conceptual drawback to this measure	 � is a function of � at �nite times� Note that
this dependence on initial orientation is still present in the two�vector approach of
Pierrehumbert and Yang �����������
In this paper
 we measured the exponential deformation experienced by a �uid

element accumulated over a �nite time interval �ti� tf � by the deformation exponent ��
We de�ne the deformation exponent � for a particle in a �D incompressible �ow as	

��ti� tf � �
�

tf � ti
ln

Pf

Pi
���

where Pi is the length of a �su�ciently small� circular material contour centered on
the particle at time ti
 and Pf is the length of the contour �deformed by advection�
at time tf �
From equations ��� and ���
 the deformation exponent � is related to � by	

e��tf�ti� �
�

��

Z ��

�

e��tf�ti�� �z �
termA

s
� � �tf � ti��

�
��

��

��

� �z �
termB

d� ���

Thus
 the deformation exponent � of a particle measures the cumulative exponen�
tial stretching of small vector �uid elements �term A�
 averaged over all directions
around the particle while weighted by the anisotropy of the stretching �term B�� The
anisotropy �term B� is unity when the growth is isotropic �which is incidentally im�
possible in a non�divergent �uid�
 and is proportional to the directional variation of
stretch rates for highly anisotropic growth�
This physical interpretation of � explains why
 in principle
 it is a better �nite�

time Lagrangian measure of deformation than the �nite�time Lyapunov exponent �

namely that it is an average over all directions around a particle and it includes the
e�ects of anisotropy� In the limit as tf tends to �
 � becomes independent of �
and approaches the �proper� Lyapunov exponent ��� Likewise
 equation ��� shows
that � also approaches ��� We suggest that as a measure of cumulative material
deformation
 � is the more appropriate conceptual generalization of �� to the �nite�
time context
 as it is unique to each particle for a given �ti� tf �� Of course
 in practice

the advantage is only signi�cant for short time intervals where �tf � ti� � ����
Unfortunately
 the numerical computation of � is more expensive than that of

�
 because one needs at least � points �we used �� or more� to represent a contour
around a particle
 but only � point to represent a vector �uid element anchored on
a particle� In our work
 the calculation of � for a particle was a two�stage process�
First
 around the particle at time t� � Day ��
 we centered a small circular contour
and advected it as a material contour forwards in time� At every time step
 the
multiplication factor #�t� t � 
t� in the contour length was calculated and then the
contour was shrunk proportionately around the particle to restore its length to the

��



initial value� The deformation exponent ��t�� t�� for the forward�time advection to
t� � Day ���� was calculated as 	

��t�� t�� �
�

t� � t�

t���tX
t�

ln #�t� t� 
t� ���

In the second stage
 the same procedure was followed but with backward�time advec�
tion to t� � Day � to get ��t�� t�� �a negative number�� Finally
 we take the weighted
average $��t�� t�� t�� as the deformation exponent ��t�� t�� for the particle over �t�� t���

��t�� t�� 	 $��t�� t�� t�� � �t� � t�� ��t�� t�� � �t� � t�� ��t�� t��

t� � t�

This approximation is good owing to the large deformations involved �i�e� exp���t�� tk��tk�
t���� �
 for k � �� ��
 because then
 ��t�� t��
 ��t�� t�� and ���t�� t�� all approximate
to ���

C� Time�Symmetric Node Advection Scheme

A numerical Lagrangian advection scheme is by de�nition an approximate way of
integrating the equation d�x�dt � �u� Given a particle�s position �xn at time tn
 one
possible approximation for the position �xn�� at time tn�� � tn � 
t is	

�xn�� � �xn �

Z tn��

tn

�u��x�t��� t��dt�

	 �xn � 
t F��xn� tn� �xn��� tn��� ���

A time�symmetric advection scheme has to be implicit since it must depend on
the past and the future equally� Moreover
 F must be invariant when the identities
of ��xn� tn� and ��xn��� tn��� are interchanged� For our work
 we used a �th�order time�
symmetric scheme where

F � �
�
�Frk��xn� tn� � Frk��xn��� tn����

where Frk is the corresponding function to F in the �th order Runge�Kutta scheme�
However
 equation ��� is not easily invertible to obtain an explicit form for �xn��


especially since the function �u comes from a non�trivial inversion of the PV dis�
tribution� Therefore
 an iterative method initialized by the �th order Runge�Kutta
estimate was employed to approximate �xn�� to a desired accuracy� We chose to iterate
until two consecutive estimates di�er by less than ���	�
r�
 where � � f�
t��� � ����
Note that the state of the �ow �u must be known at both tn and tn�� at every step in
forward or backward advection� So
 the scheme is only applicable to diagnostic runs�
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Tables

Time Lobe involved Direction of transport Amount transported

 Lobe Area � r��

Day ���� Li Intrusion �������� �������
Day �� Le Extrusion �������� �������
Estimated transport in each direction �r�� ����� ����

Area of overlap O between lobes Li and Le �r�� ����� ����

Table I Measured transport of the periodic �ow from Day ��� to Day
�� in Figure �� �Note� 	 
 ���r��

Time Lobe involved Direction of transport Amount transported

 Lobe Area � r��

Day ���� Le � Extrusion ����� ����
Day ���� Li � Intrusion ������� ������
Day ���� Le � Extrusion ������ �����
Day ���� Li � Intrusion ������� ������

Total outward transport �r�� ����� ����
Total inward transport �r�� ������ �����

Table II Measured transport of the aperiodic �ow from Day � to Day
�
�� in Figure �� �Note� 	 
 ���r��

��



Figures

Figure �	 The spatial form of the bottom topographic forcing J��	r� cos �� Both axes
are ���r�� �r��� KEY	 full lines are positive or zero
 dashed lines are negative�
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Day 0 Day  2.5 Day  5

Day  7.5 Day 10 Day 12.5

Day 15 Day 17.5 Day 20

Figure �	 Evolution of the PV contour �thick� in the barotropic vortex model� The
streamfunction �thin lines� is contoured at equal intervals� The �ow is clockwise along
the outermost streamline� Closed vorticial �ow �when present� is anticlockwise� The
dashed line on Day � denotes the zero�wind line� Both axes are ���r�� �r���

Day 2.5 Day 3.75 Day 5

Day 6.25 Day 7.5 Day 8.75

Figure �	 The equal�weighting composite kinematic �ow constructed from the dy�
namically consistent �ow over intervals �Day ���
 Day ��� and �Day ��
 Day ������
The streamfunction is contoured at equal intervals� Both axes are ���r�� �r���
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Figure �	 Lobe dynamics of the periodic kinematic �ow� The thick full line is the
lobe dynamical boundary� The PIP�s are labelled by Bn �n � �� �� ��� The thin
full and dashed lines are respectively the segments of the unstable �Wu� and stable
�Ws� manifolds that do not lie on the lobe dynamical boundary� J is the hyperbolic
trajectory� �Whenever
 J and Bn�s are located very close together
 they share a
single line�pointer�� Intruding and extruding lobes are denoted by 
Li� and 
Le�
respectively� Label 
O� refers to the overlapping region between lobes Li and Le� For
clarity
 Li
 O and Le are only shaded and labeled on Day ����
 Day ��� and Day ��
respectively� Axes are labeled in units of r��
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Figure �	 Lobe dynamics of the aperiodic dynamically consistent �ow from Day � to
Day ����
 at irregular time intervals� The same graphical representation as in Figure
� is used� Intruding and extruding lobes are numbered independently�
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Figure �	 The stable and unstable manifolds
 and the hyperbolic trajectory on Day
����� Crosses denote the perimeter of the PV vortex� Circles denote thin high�PV
�laments� Otherwise
 the same graphical representation as in Figure � is used�
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Figure �	 Schematic diagrams of �a� a cyclonic �ow with an exterior hyperbolic
trajectory� �b� an anticyclonic �ow with an interior hyperbolic trajectory� KEY	
thick solid line �Ws� � stable manifold� thin solid line �Wu� � unstable manifold� J
� hyperbolic trajectory� dashed line � critical line� shaded mass � high PV in �a�
and low PV in �b��
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Figure �	 Distribution of the deformation exponent � over a subset of A� The cross�
like formations are reminiscent of homoclinic tangles around a hyperbolic trajectory�
�See Appendix A and B for more details�� KEY	 contour interval is ����!day� solid
lines are ����!day or greater� dashed lines are ����!day or smaller� Axes are labelled
in units of r��
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