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Abstract

We applied the methods of lobe dynamics to the problem of transport across
the edge of a barotropic vortex-patch. The model used captures the essential dy-
namics of filament-shedding in the wintertime stratospheric polar vortex. Two
approaches were adopted for the problem: (1) the dominant periodic compo-
nent of the vortical flow was identified and conventional lobe dynamics methods
for periodic dynamical systems were applied to it; (2) the full aperiodic, dy-
namically consistent flow was retained and a modified brand of lobe dynamics
was used to quantify the transport. Our results show that in the periodic
case, much reversible transport occurs across the lobe dynamical boundary due
to overlapping intruding and extruding lobes. In the aperiodic case, a small
amount of intrusion was noted, contrary to the well-established fact that po-
tential vorticity shedding in barotropic vortices is uniquely outwards. In our
discussion, we argue that while lobe dynamics provides a rigorous framework for
quantifying transport across the lobe dynamical boundary, this boundary may
not be appropriate for quantifying transport across internal transport barriers,
such as the stratospheric polar vortex edge.
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1 Introduction

The particular atmospheric problem of interest in this paper is the issue of tracer
transport across the edge of the polar vortex in the lower winter stratosphere. This
is an important problem in its own right : amongst other things, transport across
the vortex edge is thought to have a significant influence on the ozone chemistry
both within and outside the vortex!]. Tt also serves as a paradigm for a wide range
of geophysical fluid dynamical problems, e.g. leakiness of the stratospheric “tropi-
cal pipe” [2], stratosphere-troposphere exchange by tropopause—folding[3], lower tr018)o—
spheric water vapour transport[4}, and cross-stream mixing in the oceanPHOL7L ]).
In many Lagrangian-chaotic flows, a well-mixed zone flanked by internal transport
“barriers” is formed through the stretching and folding associated with the transport
itself. The transport barriers are identified by sharp tracer and potential vorticity
gradients. In the winter stratosphere, the polar vortex edge is such a barrier, and
cross-edge transport is effected by Rossby-wave breaking[lo} Filaments of polar vor-
tex material are ejected into middle latitudes, where they eventually d1551pate[11].
Entrainment of mid-latitude air into the vortex has also been observed!! , but it is
much less frequent.

Methods have been devised to quantify such transgort using data from atmo-
spheric observations I A2LA3) o from models! A wide range of val-
ues has been obtained from these studies, because different deﬁnitions were adopted
for the boundaries across which the transport was measured. Indeed, Sobel et al.
(1997)[15] argued that making the appropriate choice of boundary across which to
measure transport is the crux of the transport calculation: the computed mass fluxes
may be very sensitive to that choice.

Set in the above context, we wish to investigate whether lobe dynamics provides
a useful framework for measuring transport across the vortex edge, using the vortex-
patch model of Polvani and Plumb (1992)[17]. Lobe dynamics has been employed
to quantify transport in certain modeled®H6! and observed/M18] gceanic flows. Its
distinguishing feature in such applications is the definition of a boundary, based
solely on flow kinematics, across which transport is measured. In all these cited work,
lobe dynamics yields rigorous and precise quantification of transport, hence providing
much motivation for applying it to the stratospheric polar vortex problem. Recently,
Bowman (1999)[19] even revealed the presence of stable and unstable manifolds in
the stratosphere, following the practical approach of Miller et al. (1997)[6].

With regards to theory, lobe dynamics pertaining to periodic dynamical systems
has a long tradition in the literature. We merely cite two recent work here: Ottino
(1989)[9] introduces the subject with an emphasis on applications to fluid mixing and
transport; and Wiggins (1992)[20] takes on the subject with a rigorous mathematical
approach. References to older literature can be found in both these recent work.

The lobe dynamics for aperiodic dynamical systems have also been investigated
before in the literature, but is less firmly established than for {)eriodic systems. Again
citing only recent examples, Malhotra and Wiggins (1998)“!! extended the infinite-
time formulation of lobe dynamics to aperiodic flows and apphed the theory to a range



of kinematic flows with small parameters. Subsequently, the theory was successfully
applied to computational[& and observed oceanic ﬂows[lg] . On the other hand, Miller
et al. (1997) 6] examined lobe dynamical transport over a finite time interval across
an aperiodic meandermg barotropic jet on a (-plane. Their work was followed by
Haller and Poje (1998)[%4l, where finite-time lobe dynamics theory was formulated
and used to study cross-stream mixing effected by Gulf Stream Rings. The approach
of Malhotra and Wiggins (1998) and those of Miller et al. (1997) and Haller and Poje
(1998) are related but different as the latter two emphasized finite-time behaviour of
aperiodic systems.

In this paper, lobe dynamics is applied to the model stratospheric polar vortex
via two approaches. In the first approach, we relied on the fact that the modeled
flow is close to periodic after an initial adjustment period. This allows us to apply
lobe dynamics to the dominant periodic component of the flow, making use of well-
established theory. The objective here is to evaluate how well the existing technique
performs in a kinematic flow bearing the cat’s eye feature frequently encountered in
wintertime stratospheric flow.

In the second approach, we retained the full aperiodic dynamically consistent flow.
But we employed an ad-hoc modification of the aperiodic lobe dynarmcs theory, as we
found that none of the existing theory that we are aware of 21:122] guits our purpose.
The goal is to assess whether transport across the lobe dynamical boundary is an
appropriate characterization of the transport across the vortex edge.

We delay our discussion until after the results of both approaches are presented,
and we shall note the shortcomings and merits of the lobe dynamical view of transport
across the stratospheric polar vortex edge.

2 Model Description

The object of investigation is a barotropic vortex-patch model derived from the quasi-
geostrophic shallow-water model of Polvani and Plumb (1992)[17]. This model is able
to capture the essence of the dynamics associated with the stratospheric polar vortex,
yet its simplicity renders its transport characteristics self-evident. In the model, the
transport barrier is simply the jump in potential vorticity at the vortex edge, and
so transport across it can be quantified by performing surgery on the contour de-
marcating the discontinuity, in the manner described in Dritschel (1988)[23]. Having
such a natural “boundary” makes the model ideal as a test bed for other transport-
measuring schemes. In the literature, barotropic models have also been used before
to study the dynamics of the stratospheric polar vortex (see e.g. Juckes and McIntyre
19871241y,

A brief model description follows next. For further details, the reader is referred
to Polvani and Plumb (1992) 17 The model is based on inviscid quasi-geostrophic
shallow-water dynamics on an f-plane, and uses the Contour Dynamics with Surgery
(CDS) algorithm of Dritschel (1988)[23]. The mean depth is D and the system is
forced by time-dependent bottom topography h. The system is governed by the
conservation of potential vorticity (PV), as follows :
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where Q is the potential vorticity, fo is the constant planetary vorticity, v is the
streamfunction of the geostrophic flow, and - is the inverse Rossby deformation radius
(ie. fo/VgD).

Since lobe dynamics is formulated for non-divergent flows, we let v — 0, so that
the flow is in the barotropic limit. The model is initialized at Day 0 (where a day is
defined as 47/ fy) as a circular PV vortex-patch embedded in a uniform background
of lower PV. That is,

Q:{ Qz ifT<T0

Q, otherwise

Since the wind speed increases without limit as radial distance increases, we shall
restrict our attention to the domain within 47y from the origin. The air in this region
is isolated from the rest of the f-plane from Day 0 to Day 20, as we confirmed with
the advection of a material contour initially at radius 4ry.

The topographic forcing, in polar coordinates (r,#) about the origin, takes the
form :

h(r,0,t) = DHy(1 — e '/7).J,(kr) cos 0

where J; (k1) is the 1st order Bessel function of the first kind and H is a dimensionless
parameter that governs the strength of the forcing. The forcing is aperiodic and its
time-dependence dies away for ¢t > 7 as the topography approaches a constant height.
Figure 1 shows the spatial form of the forcing.

The following set of parameters is used for all work in this paper: Q; = 1.3/,
Q, = 0.9fy, kK = 1.6/ry, 7 = 2.5days, Hy = 0.17. The above choice of values follows
Polvani and Plumb (1992)[17]. If we take 7o as 3000km and equate a model day to
a real day, these parameter values yield wind velocities that are roughly consistent
with observations in the Northern hemisphere mid-latitude lower stratosphere. Our
comparison with the stratosphere should be taken with caution however, as the model
is idealized. But for convenience, we shall sometimes refer to the origin as the “pole”
and the region outside 4ry as the “tropics”.

We have chosen a slightly supercritical value for Hy so as to get the PV vortex
breaking but not too violently, since we do not wish to complicate the lobe dynamics
in our preliminary application. Please refer to Polvani and Plumb(1992)[17} for details
on the different dynamical regimes for this model flow. Incidentally, the weak Rossby-
wave breaking in the polar vortex is well-surveyed in the literature (see e.g. Waugh et
al. (1994)[11}, Plumb et al.(1994)[12}) so that we have a reasonable basis to compare
our results to.



The following CDS parameter values are employed : p = 0.1, § = ry/800, 0t =
1/20day, where p is a measure of the node density on contours, § is the smallest
separation between contour segments before they merge, and dt is the time step used
in the computation[23]. An increase in p or a decrease in ¢ or ¢t does not significantly
alter the subsequent observed evolution of PV.

From a single prognostic run, all contour node positions are saved at every time
step. The saved PV contours represent compressed high resolution wind data, through
the invertibility principle (equation (2)). Advection of particles and material contours
in subsequent diagnostic runs uses winds at the particle and contour node positions,
inverted from the PV contours at every time step. Consistency between forward and
backward advection of the same particle or contour is ensured through the following
features:

e a common set of PV contours (wind data) for both forward and backward runs;

e a 4th order “Runge-Kutta-like” node advection scheme that respects time sym-
metry (c.f. Appendix C);

e higher node density (¢ = 0.05) than in the prognostic run;

e switching off surgery on the passive contours (6 = 0).

Such consistency is important since the diagnostic runs essentially involve forward-
backward-forward and backward-forward-backward advection sequences. The evolu-
tion of the PV and streamfunction are depicted in Figure 2.

As mentioned, the transport barrier in this model is simply the PV jump across the
vortex edge, the vortex being defined as the largest contiguous patch of high vorticity
after filaments have been cut off from it by contour surgery. From the discontinuous
reduction of the vortex area, we measured that the filament-shedding events after
Day 12.5 and Day 17.5 constitute outward transport of high-PV material by amounts
of 0.136r3 and 0.477rZ respectively.

3 First Approach: Periodic Flow

Inspection of the streamlines in Figure 2 shows that from Day 2.5 onwards, a dominant
period of 7.5 days has evolved, as the forcing becomes increasingly steady. So, we
extracted the dominant component of the flow that repeats every 7.5 days. In do
this, one may formally perform a discrete Fourier transform of the flow from Day 2.5
to Day 17.5 and pick out every second spike in the frequency spectrum, starting from
the gravest end. The resulting flow is then identical to an equal-weighting composite
constructed from the aperiodic flow during the two intervals [Day 2.5, Day 10] and
[Day 10, Day 17.5]. Figure 3 shows the composite flow, where the cycle starts with
Day 2.5, for ease of comparison with Figure 2. Because equation (1) is nonlinear,
potential vorticity is not conserved in this composite flow cycle. It is interesting to
note that this approach to obtaining periodic flows out of aperiodic flows differs from



the approach adopted in Miller et al. (1997) 61, In that paper, the authors truncated
the aperiodic flow field after one single dominant periodic cycle and repeated the
entire flow field for that time interval indefinitely into the future.

To see the lobe dynamics of the composite flow, we followed Miller et al. (1997) (6]
by using the hyperbolic stagnation point of the time-averaged flow as an estimate
of the location of the hyperbolic trajectory. In this, we assumed the flow could be
decomposed into a large steady component and a small periodic perturbation. Next,
a small circular passive tracer contour was constructed around that location on Day
2.5. It was separately advected forwards and backwards in time for one period so that
it would collapse onto the unstable and stable manifolds respectively, thus locating
them. Then, the stable manifold was phase-shifted forwards in time by two periods to
intersect the unstable manifold and identify the hyperbolic trajectory on Day 10 and
hence also on Day 2.5 and Day 17.5 as the flow is periodic. Finally, sections of the
collapsed contours around the manifolds spanning across the hyperbolic trajectory
were again advected forwards from Day 2.5 and backwards from Day 17.5, to locate
respectively the unstable and stable manifolds and hyperbolic trajectory with higher
precision.

The practice of allowing passive tracers to collapse onto manifolds, thereby re-
vealing the location of stable and unstable manifolds and the hyperbolic trajectory
is rather common in the literature®521. What is different here is the numerical
technique we use: Dritschel’s algorithm for contour advection is applied to the pas-
sive tracer contours. The method is essentially the same as Contour Advection with
Surgery (CAS) discussed in Waugh and Plumb (1994)[25], except that surgery was not
performed on the contours in order to maintain an unbroken trace of the manifolds.
In brief, the tracer contours are represented by nodes that are passively advected by
the wind field, and they are renoded constantly to ensure good resolution of fine-scale
features.

The lobes identified in this manner are shown in Figure 4. The intersection points
between the stable and unstable manifolds, that are connected to the hyperbolic
trajectory by unintersected segments of the manifolds, are known as the primary
intersection points (PIP). They are labeled as Bn’s in the figure. Note that the
position of B3 on Day 10 is identical to that of B1 on Day 2.5, as the cycle repeats
every 7.5 days. Given a reference PIP, say Bn, the lobe dynamical boundary is
defined as the union of the segment of the unstable manifold between Bn and the
hyperbolic trajectory, and the segment of the stable manifold between Bn and the
hyperbolic trajectory. It is indicated by the thick line in the figure. The reference PIP
that determines the lobe dynamical boundary, Bn, is redefined to the PIP upstream,
B(n + 1), when the stable manifold between Bn and B(n + 1) has shortened to less
than ¥

The above definition for the lobe dynamical boundary has the advantage of being
stationary in Poincare sections. In fact, it is the transport boundary conventionally
adopted in Poincare sections (c.f. Section 3.3.1 of Malhotra and Wiggins (1998)[21]).
Traditional Poincare-section analyses of periodic systems implicitly redefine the ref-
erence PIP to the second PIP upstream at the moment that each Poincare section
is taken. But when the system is considered in continuous time, the timing of the
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redefinition of the reference PIP acquires an added freedom within a period. The
choice of ¥ affects only this timing and not the amount of transport, as the latter is
dependent only on lobe areas. Since it is not an objective of this paper to address
the timing of intrusion and extrusion events, a reasonably small value of ¥ = 0.3r( is
conveniently assumed.

Table I shows the transport across the lobe dynamical boundary. It is a well-
known theorem (see e.g. Ottino (1989)[9}) that in a periodic flow, there exists an
infinite number of lobes in any tangle between the unstable and stable manifolds, and
they all have equal areas. Our numerical computation show that the intruding and
extruding lobes, Li and Le, have roughly equal but not identical area. The error values
for Li and Le in Table I refer to the uncertainty due to the incomplete collapse of the
computed passive contours onto the manifolds. Uncertainties from other sources, e.g.
the discrete representation of contours and the finite resolution in the saved PV field,
are not estimated. Thus, the discrepancy in area between Li and Le is attributed
to the accumulation of these unaccounted errors during contour advection, which is
substantial because of the exponential stretching in the Lagrangian-chaotic flow.

Therefore, we estimate that the true lobe dynamical transport to be (0.6740.05)r7
in each direction. About half of the cancelation between inward and outward trans-
port comes from the reversible migration of the fluid parcel defined by the overlap O
between Li and Le (see Figure 4). Contrast this with the ezclusive outward transport
of 0.613r2 measured across the vortex edge by the contour surgery algorithm.

4 Second Approach: Aperiodic Flow

In this section, we apply lobe dynamics to the full aperiodic vortex flow shown in
Figure 2. This is arguably the more relevant approach, since we do not expect the
wintertime stratospheric flow to be often dominated by a large periodic component.
Additionally, the lobe dynamical transport in the periodic component flow revealed
in the previous section is quite different from what we might expect from performing
contour surgery on the simple model vortex. We are interested in the transport from
Day 0 to Day 17.5. From Day 17.5 to Day 20, the roll-up of a filament signifies the
possible existence of a secondary hyperbolic point in the flow, and hence for the sake
of simplicity, that time interval is excluded. The initial adjustment period, Day 0 to
Day 2.5, is included to introduce a large aperiodic component to the case study, as
we do not expect the aperiodicity in real stratospheric flows to have small amplitude.

Regarding the lobe dynamics of aperiodic systems, as pointed out in the Introduc-
tion, we are currently aware of two different approaches in the literature. In Malhotra
and Wiggins (1998)[21], the hyperbolic trajectory is the particle trajectory to which
particle trajectories on the stable and unstable manifolds converge as time approaches
positive and negative infinity respectively, just as in periodic lobe dynamics theory.
In that paper, the theory was applied to steady or periodic flows which are disturbed
by an aperiodic component with an e-amplitude parameter, where hyperbolic trajec-
tories were proven to exist. And in more recent work, the theory has been applied to
a 3-layer double-gyre quasi-geostrophic ocean model[&, as well as real oceanic flows



in Monterey Bay, California/18). However, the theoretical conditions for the existence
of hyperbolic trajectories in an aperiodic flow of a general nature, such as our model
flow from Day 0 to Day 17.5, has not been established.

Haller and Poje (1998)[2j] formulated a theory of finite-time lobe dynamics. For
a given finite time interval where a hyperbolic stagnation point exists in the stream-
function, the authors show rigorously that a hyperbolic trajectory, and its associated
stable and unstable manifolds, exist if the flow satisfies certain specified constraints.
The manifolds and the hyperbolic trajectory identified in this manner are not unique,
but their identity converges exponentially with the length of the finite time interval.
However, in our model, the hyperbolic stagnation point in the streamfunction is non-
existent around Day 12.5. To use the method, it appears that one has to divide the
associated lobe dynamics from Day 0 to Day 17.5 into two separate episodes, each
with its own hyperbolic trajectory. But note that the separation of the filament from
the vortex after Day 12.5 in Figure 2 is not due to the stagnation point vanishing,
but is brought about by the contour surgery algorithm. When a smaller CDS param-
eter § is specified, the filament continues to stretch exponentially, even though the
stagnation point vanishes around Day 12.5. This seems to indicate that the break-
ing event ought to be associated with a single hyperbolic trajectory through Day
12.5. Additionally, from a conceptual standpoint, lobe dynamical structures, being
inherently Lagrangian in nature, should have an uninterrupted identity, even when
Eulerian structures are transitory during the period of interest. Moreover, hyperbolic
stagnation points may vanish in one frame, while persisting in another. The reason
is that the topology of Eulerian flow depends on the frame of reference. No single
frame can be appropriate for all circumstances, and it is unsure if there always exists
an appropriate frame (e.g. when a given flow has a spectrum of dispersive waves).
Therefore, our model is not accessible to this approach, at least without a clearer idea
of what the appropriate frame of reference is.

Although the above two approaches to aperiodic lobe dynamics are different in
theoretical details, they employ the same principles in practice — the hyperbolic tra-
jectory is a particle trajectory about which there is strong exponential deformation
of the fluid substance, and that this deformation lasts long enough for the stable
and unstable manifolds to be located by the exponential approach of tracers lines.
So, while both theoretical approach are not suitable to our case study for their own
reasons, the common gist of their implementation methods is still applicable.

For lack of a more appropriate approach, we therefore made the following ad-hoc
modification to the theories of aperiodic lobe dynamics: for the hyperbolic trajectory,
we select the particle about which there is the greatest exponential deformation of the
fluid substance from Day 0 to Day 17.5. The details of how we locate this trajectory
and how we measure the exponential deformation are relegated to Appendix A and
B. Here, it suffices to note that the method is meant for finite-time applications,
and is based on Lagrangian kinematics. The unstable manifold is located by the
(incomplete) exponential collapse of a circular tracer contour of radius A around the
hyperbolic trajectory in forward time starting from Day 0, using Dritschel’s contour
advection algorithm without surgery[23]. It may be thought of as the material line
that straddles the hyperbolic trajectory and has the greatest increase in length from



Day 0 to Day 17.5. But such an interpretation is not essential to the practical
implementation of the method. The stable manifold can be similarly located and
interpreted, except in reverse time starting from Day 17.5. In our case, we used
A = 0.2r.

Figure 5 shows the lobe dynamics in the aperiodic vortex flow on Day 8.5 and
subsequent times when a lobe extrusion or an intrusion occurs. The definition of the
lobe dynamical boundary in the aperiodic case is the same as in the periodic case,
following Malhotra and Wiggins (1998)[21]. The lobe dynamical boundary (thick
full line) separates an interior region (henceforth “LD-interior”) from an exterior re-
gion (henceforth “LD-exterior”). The alternating intrusion and extrusion of lobes,
aptly called “turnstile transport”, is clearly seen in Figure 6. Note that the exchange
mediated by lobes occurs directly between the vortex-edge region (the “subpolar”
region) and the region of anticyclonic flow (the “subtropical” region). This transport
is nonlocal, and so if the tracer field has a meridional gradient, the lobes will bring
air parcels of disparate tracer mixing ratios together, enhancing the efficacy of sub-
sequent mixing. Contrast this mechanism with diffusion which, by its local nature,
mixes air parcels of only slightly different tracer mixing ratios in a continuous tracer
distribution.

From Table II, the total outward transport measured by lobe dynamics from
Day 0 to Day 17.5 is (1.52 £ 0.03)rZ while the total inward transport measured is
(0.110 & 0.001)r2, with the convenient choice of ¥ = A = 0.2rq. This is much
larger than the PV transport 0.613r2 measured by the contour surgery method. We
can understand this as follows: the area of the LD-interior prior to any transport is
(4.32 £+ 0.04)r3, larger than the area mr§ of the vortex on Day 0. This indicates that
the LD-interior includes non-vortex air along its periphery. Consequently, much of
the extruded air, which originates in the periphery of the LD-interior, has low PV
and so does not contribute to PV transport.

Cancelation between inward and outward transport is only a small fraction (7.2 £
0.2)% of the outward transport, because the intruding lobes are much smaller than the
extruding lobes. Yet, the weak intrusions witnessed here are significant because their
Lagrangian identities are distinct from the extrusions (i.e. the lobes do not overlap).
They represent irreversible entrainment of LD-exterior air into the LD-interior from
Day 0 to Day 17.5. Yet no low-PV entrainment into the vortex occurs, according to
the contour surgery method.

5 Discussion

5.1 Lobe Dynamics in the Periodic Case

Because the theorem of equal lobe areas for periodic flows does not apply to the
aperiodic flow, we may expect a priori that the lobe dynamical transport in any
periodic flow component to be different from that in the full aperiodic flow. However,
from theory alone, it is unclear how big these differences are. Contrasting Day 5.0 on
Figure 4 and Day 12.5 on Figure 5, and Tables I and II, we see that the differences
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are large, despite the two streamfunctions looking rather similar in Figures 2 and 3.
In retrospect, the results affirm the well-known sensitivity of Lagrangian transport
to Eulerian flow structures. More importantly, our results caution against taking the
transport by the periodic flow component as the measure of transport in an aperiodic
flow.

We also identified an interesting transport phenomenon in the periodic case. The
instance of overlapping intruding and extruding lobes leadm% to reversible transport is
dubbed as “pathological” in Malhotra and Wiggins (1998)“*). Thus, a rationalization
for its occurence appears in order. Now, in the perlodlc system, there must be as
much fluid intruded as it is extruded. But the intruded fluid cannot really remain in
the “interior”, because the transport is strongly asymmetric across the vortex edge in
the aperiodic case, and the periodic flow is only slightly different from the aperiodic
flow from Day 2.5 onwards. The most direct way to reconcile the two requirements
is to have much of the intruded fluid extrude again before mixing can occur. To do
this, the lobe dynamical boundary moves outwards from the vortex edge, thereby
counting the bi-directional meridional stirring outside the vortex-patch as symmetric
cross-boundary transport.

5.2 Lobe Dynamics in the Aperiodic Case

Figure 6 shows the close proximity between the lobe dynamical boundary and the
vortex edge in the aperiodic flow. But note: the intruding lobe Li#1, composed
entirely of low-PV air, is intruded into the LD-interior, but it is also evidently outside
the vortex. The reason is that much of the PV filament previously wrapped around
the vortex has been removed by contour surgery, leaving fragments (vis-a-vis the
circles in Figure 6) that do not envelop Li#1. Hence, what is counted as an intrusion
by lobe dynamics, is no more than peripheral stirring outside the vortex. Closer
inspection of Figure 6 further reveals that Li#2 is composed entirely of high-PV air
and is in the LD-exterior. Yet, Li#2 is clearly part of the vortex at this time and
was never separated from it. The subsequent intrusion of Li#2 at Day 16.5 (see
Figure 5) is then an illusion resulting from the catergorical accounting procedure of
lobe dynamics. As a result, the picture of transport according to lobe dynamics is
qualitatively very different from that obtained by surgery of thin PV filaments. In the
former, some intrusion has taken place, whilst in the latter, transport is exclusively
outwards.

5.3 Lobe Dynamical Transport vs. Vortex Edge Transport

The distinction between the “turnstile” transport across the lobe dynamical boundary
and that across the vortex edge is not merely one of semantics. First, continual stirring
within the critical layer creates in the winter stratosphere, as in many similar flows,
a clear distinction (such as in chemical composition) between air poleward of the
vortex edge and the well-mixed air mass outside the edge. (In most cases, there will
be a second barrier at the other side of critical layer. We eliminated that in our
calculations simply by confining the PV gradient to a single contour.) Second, the
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edge itself becomes a transport barrier, across which transport is much weaker than
elsewhere (e.g. Sobel et al. (1997)[15]). Thus, to the extent that one can usefully
describe transport in such systems by a single measure, it is usually the transport
across the barrier(s) that is the most critical measure.

While the outward transport across the lobe dynamical boundary is kinematically
related to that across the vortex edge, the two will not usually be the same whenever
the lobe dynamical boundary does not coincide with the edge. In the examples shown
here, the two do not coincide. To some extent, this statement is trivial in the context
of our model calculations, since the relative locations of the vortex edge and the
hyperbolic trajectory are determined almost independently by the initial conditions
and the bottom topography. In reality, it is stirring associated with the hyperbolic
trajectory that creates the sharp vortex edge from continuous gradients (e.g. Juckes
and Mclntyre (1987)[24]), so the two are not mutually independent. However, in
a conservative flow, the location of the vortex edge depends on the past history of
transport, while the lobe dynamical boundary is a function only of the kinematics
during the period of interest. Even in a simple model such as that used here, there are
certain parameter ranges in which a few events occur in which material is stripped off
the vortex, following which transport across the edge Ceases[”], even though turnstile
transport continues indefinitely within the critical layer. At least in the stratospheric
context, the location of the vortex edge is also determined by nonconservative effects
(in particular, radiative cooling acting on PV). Thus, we do not expect in general a
precise relationship between the lobe dynamical boundary and the vortex edge.

5.4 Asymmetric PV Transport across the Vortex Edge

There is much observational evidence that extrusions of high-PV air occurs more
frequently than intrusions of low-PV air in the stratospheric polar vortex1 1121,
Modeling studies come to essentially the same conclusion, although cases where in-
trusions dominate over extrusions could be contrived26!. For barotropic vortices such
as the one in this paper, outward breaking of high-PV air seems to be the only form
of cross-edge transport.

Although lobe dynamics may not provide a good framework for measuring cross
vortex-edge transport, it does provide some insight into the phenomenon of asym-
metric transport. In our case study, right from Day 0, the hyperbolic trajectory is
located outside the PV vortex. Figure 7(a) is a schematic representation of the sit-
uation. Given this geometry, the high-PV filament extruded from the vortex must
be nearer the unstable manifold than the low-PV air in lobe Li#1. Consequently
the high-PV air undergoes strong exponential stretching and cascades to small scales
before the low-PV air. It is reasonable, therefore, for it to be surgically removed
before the low-PV air. (In the stratosphere, the downscale cascade of thin high PV
filament would eventually be dissipated by molecular diffusion[27].) The result is then
a high-PV filament extruding and “mixing” into a low-PV environment, and not the
converse.

We note in passing that if the hyperbolic trajectory is located inside a vortex
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(Figure 7(b)), inward breaking will be the norm, such as the case with an interior
critical line in Nakamura and Plumb (1994)[26]. In the stratosphere, the bias for
filament-shedding from the tropics into the surf zone can be explained in the same
manner — the hyperbolic trajectory now lies polewards of the tropical easterly jet.

6 Conclusions

Previous work in the literature®2021L22] have shown that lobe dynamics gives
an engaging and mathematically precise framework for understanding transport in
Lagrangian-chaotic flows. Intruding and extrudingYIObes have provided a systematic
measure of transport in many oceanic ﬂows[5]’[6][ M8l In the winter stratosphere,
the polar vortex edge is a throttle to tracer transport, and many methods have been
devised to quantify the mass and tracer fluxes across it. However, the utility of lobe
dynamics in this context was unknown. In this paper, we investigated this problem
by adopting two approaches.

The periodic approach yielded material transport that is qualitatively very dif-
ferent from the PV transport measured by Dritschel’s contour advection algorithm.
Equal quantities of air (1.34 4+ 0.07)r2 are transported in both directions across the
lobe dynamical boundary over two periods from Day 2.5 to Day 17.5, with about
half of the quantity being reversible transport due to overlapping intruding and ex-
truding lobes. The transport measured by the CDS algorithm was a total of 0.613r3
exclusively outwards from Day 0 to Day 17.5. The contrast highlights the fact that
transport rates computed across the lobe dynamical boundary, which is located just
outside the vortex edge, not only exaggerate the magnitude of transport, but also fail
to capture its asymmetry.

In the aperiodic approach, there is an improvement in the representation of the
asymmetry of transport — the total inward transport across the lobe-dynamical bound-
ary is only (7.2 +0.2)% of the total outward transport. However, the total outward
transport of (1.52+0.03)rZ from Day 0 to Day 17.5 is much larger than the transport
of 0.613r2 measured by the CDS algorithm. This is because the interior defined by
the lobe dynamical boundary initially includes much low-PV air which is extruded
later on. The intruding lobes do not actually cross the transport barrier, vis-a-vis the
edge of the vortex-patch. The underlying reasons are: (1) the categorical accounting
procedure of lobe dynamics; and (2) the small but significant misalignment between
the lobe dynamical boundary and the transport barrier.

Nevertheless, while not suitable as a quantitative theory of transport across the
polar vortex edge, lobe dynamics does give some qualitative insight into the problem
of asymmetric PV transport across the vortex edge.
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Appendix

A. Location of the Hyperbolic Trajectory

We first located the locus of large instantaneous stretching from maps of det(M) at
Day 0 and Day 17.5, where M is the velocity gradient tensor defined by equation
(3) in Appendix B. The winds from which M was derived had been inverted on a
regular grid of resolution 0.025r by 0.025r¢. Negative det(M) indicates local strain
dominating over local rotation, in which case S = [— det(M)]'/? is the instantaneous
rate of exponential stretching of small material elements, in certain time-dependent
eigen-directions.

Note that det(M) is not a scalar — its value is not preserved under coordinate
transformations. But the co-moving frame of the background flow is ideal for com-
puting det(M) in our case, because the eigen-directions of M(t) at the location of
the hyperbolic trajectory varies the least with time in this frame (see e.g. Polvani
et al. (1989)[28]). In our model, the background flow is associated with the bottom
topography and so det(M) is evaluated in the stationary frame.

As the mean rate of elongation of the PV contour from Day 0 to Day 17.5 was
about 0.25/day, we chose Sy, = 0.25/day as the threshold beyond which S is consid-
ered significant. So, we advected contours demarcating the det(M) < —S? region on
Day 0 forwards in time, and other similar contours on Day 17.5 backwards in time.
The intersection of regions enclosed by the forward-advected and backward-advected
contours denote the fluid substance experiencing significant S on both Day 0 and
Day 17.5. It was next verified that this set of fluid substance experienced significant
S throughout Day 0 to Day 17.5.

On Day 10, this intersection set is least extended spatially. Visual inspection at
this time shows that a subset of it, A, lying near the hyperbolic stagnation point in
the streamfunction, accumulates the most stretching both in forward advection from
Day 0 to Day 10, and in backward advection from Day 17.5 to Day 10. Since the flow
is incompressible, this implies that A also accumulates the most stretching from Day
0 to Day 17.

Next, a coarse grid was set up over .4 on Day 10 and a precise Lagrangian measure
of exponential deformation — vis-a-vis the deformation exponent £ defined by equation
(5) in Appendix B — was calculated for all particles lying on the grid points. High
values of £ were aligned in cross-like formations, reminiscent of the homoclinic tangles
around the hyperbolic trajectory (Figure 8). The calculation was repeated at finer
and finer grids over the heart of the cross with the highest £. In the end, the particle X
with the largest £ on the finest grid was identified as the one closest to the hyperbolic
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trajectory. The hyperbolic trajectory is taken here to be the particle in A that has
the largest &.

X was advected backwards to Day 0 and forwards to Day 17.5 to estimate the
initial and final locations of the hyperbolic trajectory. To gauge the error in the
estimates, a circular contour centered on X, with radius equal to half the finest grid
resolution (~ 107%rp), was advected from Day 10 to Day 0 and from Day 10 to Day
17.5. On Day 0 and Day 17.5, these “error contours” lie within the judiciously chosen
distance of A = 0.2r¢ from X, so that tracer contours used to locate the stable and
unstable manifolds do in fact envelop the hyperbolic trajectory.

Finally, note that the earlier calculation of det M in an appropriate Eulerian
frame only serves to pick out the approximate location of the material set A that
has the highest cumulative exponential stretching. The subsequent identification of
the hyperbolic trajectory within A is not crucially dependent on this calculation (i.e.
we can have a slightly different set A and still be able to define the same hyperbolic
trajectory). Hence, the method here is fundamentally based on Lagrangian kinematics
and is independent of the Eulerian frame of reference.

B. Some Mathematical Details

The velocity gradient tensor M of 2D flows is given by Batchelor (1967) 291 in cartesian
coordinates (x,y) as:

ou  du
M(t) = [ 2oy } 3)
or Oy

Note that in incompressible flows, tr(M) = 0 at all times.
The instantaneous rate of deformation experienced by a small fluid element AZ is
related to M (t) by:

D.. Di .. )
EAx_ADt_Au_M(t) A7

Observe that the symmetric component of M (t) provides local strain and isotropic
expansion, while the antisymmetric component of M (t) provides local rotation (the
rate of which equals half the vorticity). Thus, real eigenvalues of M (t) represents
physically the strain overcoming the rotation, leading to exponential deformation of
the small fluid element at that instant. The instantaneous stretching rate S(t) is
properly the positive eigenvalue of M (t), which is [~ det(M)]"/? in incompressible
fluids.

To measure the cumulative stretching rate on a fluid element over a finite time
interval [t;,ts], one may imagine using the Lyapunov exponent A computed over a
finite-time interval 3031,
tensor M(t) by:

It can be related to the instantaneous velocity gradient

)\(9, ti, tf) =

/ Y81 M(t) - 2(6:1) dt (4)

tr—t;
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Here, n(0;t) is a unit vector always parallel to an infinitesimal vector fluid element
that is anchored at one end to the particle. It rotates with the local flow around
that particle such that its orientation at time t; is in direction 6. But there is a
conceptual drawback to this measure: \ is a function of # at finite times. Note that
this dependence on initial orientation is still present in the two-vector approach of
Pierrehumbert and Yang (1993)[32].

In this paper, we measured the exponential deformation experienced by a fluid
element accumulated over a finite time interval [¢;, ] by the deformation exponent &.
We define the deformation exponent & for a particle in a 2D incompressible flow as:
! In Ly
ty—1t;, B

§(tinty) = (5)

where P; is the length of a (sufficiently small) circular material contour centered on
the particle at time ¢;, and Py is the length of the contour (deformed by advection)

at time t;.
From equations (4) and (6), the deformation exponent ¢ is related to A by:
[ or\?
Etp—ti) — — Ap=ti) 1 4 (4, — )2 [ 22 Ao 6
€ 2/]_(_/(; \et A,\/ +(f Z) 89 ()
ter‘;lB

Thus, the deformation exponent £ of a particle measures the cumulative exponen-
tial stretching of small vector fluid elements (term A), averaged over all directions
around the particle while weighted by the anisotropy of the stretching (term B). The
anisotropy (term B) is unity when the growth is isotropic (which is incidentally im-
possible in a non-divergent fluid), and is proportional to the directional variation of
stretch rates for highly anisotropic growth.

This physical interpretation of & explains why, in principle, it is a better finite-
time Lagrangian measure of deformation than the finite-time Lyapunov exponent A,
namely that it is an average over all directions around a particle and it includes the
effects of anisotropy. In the limit as ¢; tends to oo, A becomes independent of ¢
and approaches the (proper) Lyapunov exponent \,,. Likewise, equation (6) shows
that ¢ also approaches \,. We suggest that as a measure of cumulative material
deformation, £ is the more appropriate conceptual generalization of A, to the finite-
time context, as it is unique to each particle for a given [t;, t7]. Of course, in practice,
the advantage is only significant for short time intervals where (t; —¢;) < 1/€.

Unfortunately, the numerical computation of ¢ is more expensive than that of
A, because one needs at least 3 points (we used 12 or more) to represent a contour
around a particle, but only 1 point to represent a vector fluid element anchored on
a particle. In our work, the calculation of £ for a particle was a two-stage process.
First, around the particle at time ¢, = Day 10, we centered a small circular contour
and advected it as a material contour forwards in time. At every time step, the
multiplication factor I'(¢,¢ + dt) in the contour length was calculated and then the
contour was shrunk proportionately around the particle to restore its length to the
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initial value. The deformation exponent &(tg,?2) for the forward-time advection to
ty = Day 17.5 was calculated as :

to—0ot

> InT(t,t + dt) (7)

ty,to) =
5(07 2) tZ_t[]

In the second stage, the same procedure was followed but with backward-time advec-
tion to #; = Day 0 to get {(fp, 1) (a negative number). Finally, we take the weighted
average &(t1,19;t9) as the deformation exponent £(t1,t) for the particle over [ty ¢5].

(t1 —to) E(to, 1) + (t2 — o) E(to, t2)

E(t1, ) m E(t1, tas t) =
to — 1

This approximation is good owing to the large deformations involved (i.e. exp[&(to, t)(tr—
to)] > 1, for k = 1,2), because then, £(t1,t2), {(to, t2) and —&(ty, 1) all approximate
t0 Ao

C. Time-Symmetric Node Advection Scheme

A numerical Lagrangian advection scheme is by definition an approximate way of
integrating the equation d¥/dt = @. Given a particle’s position 7, at time t,, one
possible approximation for the position @, at time ¢,,1 = t, + 0t is:

tn+1
Tpi1 = Ty +/ a(Z(t"), t")dt'
tn
R Ty + 0t F(Zn, tn; Tnit,tngt) (8)

A time-symmetric advection scheme has to be implicit since it must depend on
the past and the future equally. Moreover, F must be invariant when the identities
of (Z,t,) and (Z,,41,%,+1) are interchanged. For our work, we used a 4th-order time-
symmetric scheme where

1 — —
F= 5[:Frk(xna tn) + frk(xn-i-la tn-l—l)]

where F, is the corresponding function to F in the 4th order Runge-Kutta scheme.

However, equation (8) is not easily invertible to obtain an explicit form for 7,1,
especially since the function @ comes from a non-trivial inversion of the PV dis-
tribution. Therefore, an iterative method initialized by the 4th order Runge-Kutta
estimate was employed to approximate &, .1 to a desired accuracy. We chose to iterate
until two consecutive estimates differ by less than 10™3a’rq, where a = fydt/2m = 0.1.
Note that the state of the flow @ must be known at both ¢, and ¢, at every step in
forward or backward advection. So, the scheme is only applicable to diagnostic runs.
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Tables

Time | Lobe involved | Direction of transport | Amount transported
= Lobe Area / 1}
Day 6.25 Li Intrusion 0.72047 £ 0.00002
Day 10 Le Extrusion 0.62397 4+ 0.00009
Estimated transport in each direction /73 0.67 £ 0.05
Area of overlap O between lobes Li and Le /r? 0.34 £ 0.07

Table I Measured transport of the periodic flow from Day 2.5 to Day
10 in Figure 4. (Note: ¥ = 0.3ry)

Time | Lobe involved | Direction of transport | Amount transported
= Lobe Area / r}

Day 12.5 Le#1 Extrusion 1.05£0.03

Day 14.5 Li#1 Intrusion 0.0946 4+ 0.0006

Day 16.5 Le#2 Extrusion 0.470 4+ 0.001

Day 16.5 Li#2 Intrusion 0.0155 4+ 0.0005
Total outward transport /r2 1.52 4+ 0.03
Total inward transport /r3 0.110 £ 0.001

Table II Measured transport of the aperiodic flow from Day 0 to Day
17.5 in Figure 5. (Note: X = 0.2r)
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Figures

Figure 1: The spatial form of the bottom topographic forcing J; (kr) cos 6. Both axes
are [—4rg, 4rg]. KEY: full lines are positive or zero, dashed lines are negative.
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Day 7.5 Day 10 Day 12.5

)

Day 15

Figure 2: Evolution of the PV contour (thick) in the barotropic vortex model. The
streamfunction (thin lines) is contoured at equal intervals. The flow is clockwise along
the outermost streamline. Closed vorticial flow (when present) is anticlockwise. The
dashed line on Day 0 denotes the zero-wind line. Both axes are [—4r, 47].
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Figure 3: The equal-weighting composite kinematic flow constructed from the dy-
namically consistent flow over intervals [Day 2.5, Day 10] and [Day 10, Day 17.5].
The streamfunction is contoured at equal intervals. Both axes are [—4r, 479).
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Figure 4: Lobe dynamics of the periodic kinematic flow. The thick full line is the
lobe dynamical boundary. The PIP’s are labelled by Bn (n = 1,2,3). The thin
full and dashed lines are respectively the segments of the unstable (Wu) and stable
(Ws) manifolds that do not lie on the lobe dynamical boundary. J is the hyperbolic
trajectory. (Whenever, J and Bn’s are located very close together, they share a
single line-pointer.) Intruding and extruding lobes are denoted by “Li” and “Le”
respectively. Label “O” refers to the overlapping region between lobes Li and Le. For
clarity, Li, O and Le are only shaded and labeled on Day 6.25, Day 7.5 and Day 10
respectively. Axes are labeled in units of rg.

24
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Figure 5: Lobe dynamics of the aperiodic dynamically consistent flow from Day 0 to

Day 17.5, at irregular time intervals. The same graphical representation as in Figure
4 is used. Intruding and extruding lobes are numbered independently.
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Figure 6: The stable and unstable manifolds, and the hyperbolic trajectory on Day
14.5. Crosses denote the perimeter of the PV vortex. Circles denote thin high-PV
filaments. Otherwise, the same graphical representation as in Figure 4 is used.

attimeT sometime after T

(b)

Figure 7: Schematic diagrams of (a) a cyclonic flow with an exterior hyperbolic
trajectory; (b) an anticyclonic flow with an interior hyperbolic trajectory. KEY:
thick solid line (Ws) = stable manifold; thin solid line (Wu) = unstable manifold; J
= hyperbolic trajectory; dashed line = critical line; shaded mass = high PV in (a)
and low PV in (b).
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Figure 8: Distribution of the deformation exponent & over a subset of A. The cross-
like formations are reminiscent of homoclinic tangles around a hyperbolic trajectory.
(See Appendix A and B for more details.) KEY: contour interval is 0.05/day; solid
lines are 0.85/day or greater; dashed lines are 0.80/day or smaller. Axes are labelled
in units of ry.
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